| 主页 | 频道首页 | 本站地图 | 论坛留言 | 合作联系 | 本站消息 | |
科技动态 技术发展 文化研究 生物生态 人的研究 生命起源 基因工程 科学普及 科学探索 专题其他

对称破缺之美:2008年物理诺贝尔奖工作介绍

2011-09-23
对称破缺之美:2008年物理诺贝尔奖工作介绍,对称破缺之美,物理图像
对称破缺之美:2008年物理诺贝尔奖工作介绍

打开理论物理的论文和教科书,扑面而来的就是长篇累牍的公式,推导。所以谈起理论物理,人们往往将之与数学连在一起。但是物理学家们津津乐道的,却往往不是如何解方程或算积分,而是所谓“物理图像”,也就是对物理问题以至整个物理学的总体看法。这个“物理图像”不是上一门课或看一本书就能掌握的,而是需要沉浸在物理之中,假以时日才能体会。说句“玄”的话,“物理图像”不是“学”的,而是“悟”的。物理之“真”,在于理论与实验的符合。而物理之“美”,就在于“物理图像”的创意。

“对称”,是物理图像中历史最长的概念之一。在现代科学开始以前,人们就相信自然界存在着种种的对称性。从数学上讲,对称性就是对体系进行某种数学变换时,其性质不变。例如,空间点反射对称就是说当把所有空间坐标都改变正负号时,系统的性质不变。所以对称性和不变性常常是可以互换的同义词。在经典物理中,最基本的是时间,空间平移,以及空间转动的对称性。随着物理理论的系统化和抽象化,特别是在量子力学出现以后,对称性在物理中的地位越发变得重要了。而且,二十世纪初人们还发现了对称性与守恒律的关系。例如空间平移对称导致了动量守恒定律。在现代物理中,引进了几种更抽象的对称性以及表达和处理对称性的数学工具(主要是群论)。对称性不但是揭示一个理论种种性质的工具,而且也是发展理论时的指南。在建立一个理论时,我们往往假定它满足某种对称性,从而对这个理论的结构和形式加上相应的限制。

但是“对称”并不是先验正确的。有些理论本身就不满足某种对称性。例如,伽利略和牛顿的经典力学满足“伽利略变换”下的对称,也就是从一个惯性参照系到另一个惯性参照系的变换。但是电磁学理论却不满足这个对称。例如:如果一根导线带有电流,它周围就有磁场。如果一个电子顺着导线的方向匀速运动,它就受到磁力作用(洛仑兹力)。但是如果观察者是跟着电子走的(即在另一个惯性参照系中),他看到的电子是静止的,应该不受磁力。可见电磁理论在这样的参照系变换下就不是不变的了。这种理论本身对于对称性违反被称为“显性破缺”(explicit symmetry breaking)。解决的办法有两种。一种是找到这个特定理论“破缺”的合理的理由。例如,人们试图引进“以太”来说明一个对于电磁理论来说一个惯性参照系与另一个不同,就像引进了“水”这个媒介之后,顺水行舟与逆水行舟就不同了。另一个方法是找到一个更一般的对称性来“修补”这个破缺。例如,用洛仑兹变换来代替伽利略变换,就使得电磁理论恢复了参照系变换下的对称:在随着电子走的参照系里会有一个电场,而使电子受到同样的力。洛仑兹变换在改变观察者速度的同时引入了时间和空间尺度的变化。它是伽利略变换的推广,因为后者是相对速度远小于光速时的近似。但是经典力学在洛仑兹变换下却又不对称了。于是它也被推广为满足洛仑兹变换对称性的狭义相对论。同样,经典力学是狭义相对论在速度远小于光速时的近似。对这个特定的问题,这第二种解决方法在“物理图像”上更为完美:它实现了力学和电磁学新的“和谐”。而这个结果的正确性也通过了实验的检验。

另一种对称性破缺是“自发破缺”(spontaneous symmetry breaking)。这意味着理论本身是对称的,但物理体系的稳定状态却不对称。最简单的例子是一枝竖立在桌面上的铅笔。从物理理论上来说,它受到的力(重力)是相对于垂直方向对称的。也就是说在水平面上各个方向对它来说是一样的。但是当它倒下来后(达到稳定状态),却有了一个特定的水平方向(倒下后的位置),而破坏了这种对称性。更复杂一点的是铁磁材料的自发磁化。材料内部磁矩的相互作用是没有特定方向的(旋转对称)。但自发磁化后,其稳定态带有了特定方向的磁性。但这种自发性破缺并不是所有情况下都会发生的。例如在高于居里温度的条件下,铁磁材料不会自发极化,就没有对称性破缺的状态。

尽管对称性及其破缺的概念由来已久,但对于每个具体的理论和状态,还是要通过细致的分析和运算才能了解。特别是对称性破缺的可能方式比对称性本身多得多,其数学推算和背后的物理含义更是令人着迷。2008年的物理诺贝尔奖颁发给两个与对称性破缺有关的工作:美籍日裔科学家南部阳一郎(Yoichiro Nambu)的自发对称破缺的首创工作和日本科学家小林诚(Makoto Kobayashi)与益川敏英(Toshihide Maskawa)的夸克模型。下面简单介绍一下这两个工作。

南部的工作源自凝聚态物理中的超导理论。超导体的基态(“稳定态”)是所谓的“库珀对”,即两个电子通过声子(也就是晶格的振动)耦合形成的电子对。“库珀对”在固体中的运动就形成了超导现象。南部注意到这个理论的一个问题:它的基态不是电中性的,也就是说,与电荷守恒相关的“规范对称”遭到了破坏。南部运用量子场论的工具对超导理论进行了重新表达和计算,发现这是个“自发对称破缺”的结果。了解这一点后,其他关于超导性质的计算都可以在规范对称的框架中进行了。虽然自发对称破缺早已为人所知(如以上说到的自发磁化),但南部首先将它引入量子场论的领域,可以说是建立了一个新的物理图像。南部那篇论文从一个很简单,很一般的相互作用模型出发,推出了超导理论中的很多结论。这说明他真正抓住了超导现象的本质。南部工作的一个重要结论是:与库珀对相关的其他多粒子效应可以用一种质量为零的准粒子来描述。事实上,数学上可以证明这种零质量粒子是自发破缺的必然产物,被称为南部-Goldstone粒子。

这个工作很快就被用来对付当时粒子物理学中的另一个难题。有一种基本粒子称为π介子。它是一种强子,但其质量只有典型强子的七分之一。为什么它的质量这么小?南部认为这也是自发对称破缺的结果。他与合作者Jona Lasinio提出一个理论,其自发破缺的基态(所谓“真空态”)给出了π介子的存在,但其质量为零。再引入一个很小的显性破缺(即相互作用本身的对称破缺),π介子就有了适当的质量。这个理论是夸克理论和量子色动力学的前身。自发对称破缺的思想,对称破缺与粒子质量的关系,以及南部理论中的手性对称概念是目前基本粒子理论的重要基础。虽然现在看来他们的模型不完全对,但后来更为正确的夸克理论也实现了他们的物理图像。

小林和益川的工作也是关于对称破缺,但却是另一个角度。这次的对称破缺是先由实验发现的。在量子理论中,有一种非常普遍的对称性,称为CPT对称。C是电荷共轭,即把粒子与反粒子相互变换。P是宇称变换,即空间坐标的反射变换。T是时间反演。CPT三种变换同时发生时,现有的理论都是保持对称的【注】。但是对每一个分别的变换,就不见得了。大家都知道五十年代李政道和杨振宁等发现的宇称不守恒(也就是P不对称)。1964年,实验发现CP联合起来也不对称。这是在涉及强子的弱相互作用中发现的。当时占主导地位的理论——弱电统一理论不能解释CP不对称的观察结果。从理论上说,要出现CP不对称,在模型中需要有一个复数的耦合常数。小林和益川发现,在模型的解(也就是本征态)中,有一个矩阵就是这个关键的耦合常数。当时的模型有四个夸克,所以这个矩阵没有足够的自由度来引入复数的耦合。于是小林和益川扩展了这个模型,使其包括六个夸克。这样,就可以在那个矩阵中引入一个相角,从而解释CP不守恒的实验结果。

这个新的模型(称为KM模型)是很大胆的。他们确定从那个矩阵入手,就是一个创举。而且,这个模型假设了六个夸克。而当时只发现了三个夸克,关于四个夸克的理论(KM模型的出发点)还只是一个猜想。再说,KM模型给出的对称破缺是本征态上的。但这是一个显性破缺,也就是说,背后的物理理论(相互作用)也是CP不守恒的。然而,小林和益川并没有给出这个新的相互作用。显然,他们需要对自己的物理图像有相当的信心,才能在没有实验支持的情况下走那么远。在他们的论文发表时(1972年),这个工作并未受到很高重视。事实上,这篇论文是发表在一个相对冷门的杂志上的。然而,三年以后,关于第五和第六个夸克的证据开始出现。五年后第五个夸克(底夸克)被发现。第六个夸克(顶夸克)在1995年被发现。后来在日本和美国建立了两座“B工厂”加速器设备,专门来检验CP不守恒的现象。在2002年,对CP不守恒的几个定量测量符合KM模型的预测,而否定了另一个可能的理论。所以,KM模型得到了很好的实验证实而被广泛接受了,成为目前强作用理论“标准模型”的一部分。

CP不对称还有另一个重要意义,就是解释我们的宇宙正物质多于反物质的原因。这是宇宙论中的一个重要课题。但是这个解释需要的CP不对称程度比KM所预言的要大得多。所以CP不对称可能还存在尚未发现的其他原因。

根据诺贝尔奖的官方宣布,2008年得奖的两个工作都是在基本粒子领域的:南部对“亚原子物理中自发对称破缺”的贡献以及小林和益川对新夸克的预言。但是,南部得奖演说的题目却是“粒子物理中的自发对称破缺:一个杂交的例子”。演讲的开始就谈到他读大学时虽然立志于粒子物理,却有机缘接触了很多凝聚态物理。他的自发对称破缺理论是在超导领域中发展起来的。虽然用的是场论的方法,但开始时并未预见到这个工作在粒子物理中的意义。在通过一个讲座意识到超导理论中电荷守恒的困难后,作为粒子物理学家的南部花了两年时间研究这个凝聚态的问题,终于发表了一篇数学技巧和物理图像都十分优美的论文。而这个工作又回过来使他在粒子物理领域做出巨大贡献。在物理史上,还有一个“杂交”的范例:粒子物理学家威尔逊(Kenneth Wilson)将粒子物理中的基本工具“重整化群”引入统计物理,漂亮地解决了困扰人们多年的相变和临界现象问题。为此他得到了1982年诺贝尔物理奖。可惜的是,这种跨领域的工作仍然是特例而不是常规。把基本粒子和凝聚态这两个物理领域分割以至对立起来的物理学家大有人在。很多物理系学生也是从很早就界定了自己的专业,而对另一个领域消失了兴趣。希望南部的得奖能使人们更重视物理中更本质的“图像”,而不是各个分支中的具体知识。
各学科领域入门书籍推荐
物理学的诗,关于将相对论,量子力学,弦理论与文学结合的第一次尝试
笔记本电池容量恢复
一不小心成了计算机病毒的教父Adleman
好的搜索引擎尽在此处
个性化推荐系统简介
学者称中国50年内出不了《自然》杂志
科学作家嵇晓华:中国读者很难提出好问题
吴国盛:供大学生提高科学人文素养的60部西学名著
十个著名的思想实验
数学的三次危机
量子物理学量子通信技术未来
Google应用大全
科学:人文科学、自然科学和社会科学
傅立叶变换和卷积的物理意义
关联规则挖掘综述和关联规则挖掘算法
量子物理学引发奇谈怪论:薛定谔的猫
CIPP评估模型与信用评估模型
《行为经济学新进展》简介
《行为经济学新进展》
《纽约时报》2009年十大好书
[转]MIT牛人解说数学体系
如何使用Google
世界数学大事记
如何写出令同行感兴趣的科技论文
什么是科学的研究方法
科学领袖的素质及特点讲座总结
贾文毓:科学语境中的“道,可道,非常道...”
钱学森著《关于思维科学》
科教社:"哲人石丛书"出版十年
ctfmen.exe病毒分析和ctfmen.exe病毒查杀
未成年人阅读率远超成年人
叶永烈认为国家的科技实力决定科幻水平
查找文献的一些体会
“猫癣下载器”病毒和“猫癣下载器”专杀工具
让科学流行起来
“科普”要普及的是“科学思维”
科普:一颗难啃的大松果
科学家揭示做噩梦六大原因
情绪也能经营
被遮蔽千年的大师
天文专家介绍日全食四大看点
8月1日中国将出现日全食白天将变成黑夜
地震探秘和火山探秘10
伽马射线能量巨大可致命
火山探秘和地震探秘7-9
火山探秘和地震探秘4-6
科学技术普及,科普知识1 科学技术普及,科普知识2

本栏目主要介绍科学普及知识,包括科普知识、中国科普、科普文章、科普读物、对称破缺之美:2008年物理诺贝尔奖工作介绍等。特别关注有关人与文化方面的研究。

『科学频道首页』 『本栏页首』 『关闭窗口』