| 主页 | 频道首页 | 本站地图 | 论坛留言 | 合作联系 | 本站消息 | |
科技动态 技术发展 文化研究 生物生态 人的研究 生命起源 基因工程 科学普及 科学探索 专题其他

人脑的发育

2010-03-24
人脑之谜,脑的发育,神经胶质细胞,神经元,脑实质
人脑的发育

《人脑之谜》苏珊.格林菲尔德 著杨雄里 等 译 第四章 脑的发育
有人曾经问物理学家迈克尔·法拉第:“电有何用?”他答道:“新生婴儿有何用?”法拉第的观点很容易理解:婴儿好像特别没用。我们需要约16年的时间才能认识作为一个成年人的潜能,而妊娠期约为26天的大鼠只要两个月左右就完全发育成熟。大象在子宫中度过的时间是人类的2倍多,约20到22个月,但11年内就发育成熟了。那么和其他动物相比,人类为何要经历这么长的学习期呢? 1883年,哲学家和历史学家约翰·菲斯克(John Fiske)在美国普及进化论,他曾问道:“婴儿期的意义何在?人类出世时比其他生物更无用,并比其他生物需要长得多的抚育期、多得多的长辈悉心照顾和明智引导,其意义何在?”我们将通过观察脑的发育来剖析这个问题,并确定使我们成为个体的那些因素。

生命始于卵子的受精,其时,来自父亲的单个精子钻入母亲的卵子。这个动作诱发了化学变化,由于这些化学变化,拥集在该卵子周围的众多其他精子再无法进入。但是,从一个直径只有约0.1毫米的卵子发育成大脑是一个漫长的历程。建立一个大脑(实际上还有身体的其他部分)的第一步,是由卵子和精子形成单个细胞:合子。一天多(约30个小时)之后,合子分裂成两个细胞,并一再地重复这个过程,以至在三天内,就已形成了一个形如桑葚的细胞球,因而名为桑葚体(morula,桑葚的拉丁语)。

受精后5天,桑葚体内的细胞分裂为两群。一群细胞形成外壁,产生一个中空的球体,而其余的细胞在球体内部一端聚集成一个紧密的内细胞群。桑葚体即成了胚泡,形成其外壁的细胞将为发育中的胚胎提供营养,胚胎则由内细胞群生成。然而,这只是在妊娠后16天。胚泡下一个重要阶段是植入子宫内膜,在那里新生命将会得到以后约39周所需的所有营养。

植入后约1天,聚集在胚泡内部的内细胞球已与外壁分离,与子宫合为一体。混杂的细胞群开始平贴在胚盘上,那是一个两层细胞厚的椭圆盘。令人难以置信的是,这小薄盘竟是组成人体的各类细胞的本源,而这些早期的细胞前体,尽管相当原始,但已经开始变得多种多样。

约12天时,胚盘上层的某些细胞开始移向中部,好像踩着某种彩排过的技巧精湛的舞步。在胚盘中部,这些可动的细胞即嵌入到原来的上层和下层之间,沿胚盘盘绕,这样产生了第三层细胞。这时胚盘有三层厚了。正是在这个阶段,我们第一次可以把注意力放在未来的脑上。中层细胞好像发送化学信号到上层细胞,后者因而再次分化,成为神经元。胚胎学家把前体神经元的上层称为神经板。

到了18至20天,神经板中部开始发生变化,其中心内凹,而边缘部分向上、向外移动。三周之后,边缘部分开始隆起,生成神经沟。然后神经沟边缘内褶并愈合,从而形成一种柱状结构,即神经管。到达子宫后一个月,一个初始的脑已经形成。事实上,正好在神经管成形之前,年轻的大脑就开始显示自己的存在,甚至在神经板阶段,某些区段就已经注定要形成特异的脑区。

在子宫内15周时,可以在胚胎前端辨认出两个隆起,那是我们高度发达的大脑半球的原基,也可以辨认出皮层下的某些脑区,如基底神经节,正如我们在第二章所述,基底神经节在运动中起重要作用。包容所有这些纷乱的萌芽状活动的是头颅。发育中的头颅有膜质区,使其能扩展,为这种充分的生长提供了可能;只是在生命晚得多的时候,脑的大小不再增加,头骨最终融合在一起。

未来的神经元中的每一个都要分裂几次,以至细胞数目有巨大的增加,在速度最高时,每分钟细胞分裂将产生250000个新的神经元。初始脑继续发育,神经管项部增厚形成三个突起。在第二个月开始时,在适当位置上可识别若干脑区。因为部分脑生长得比其他部分更快,神经管的前段开始弯向两个位置,正与发育中的脊髓以直角相对。正前端膨大成为两个半球,约11周时,后端外伸,形成易于辨认的小脑。

神经管的关闭导致了脑内的空腔——脑室的形成。这些脑室组成相互交错的迷路,最终开口向着脊髓。通过这些迷路的小孔,无色液体可以循环,并将终生浸浴整个脑和脊髓。正是这种脑脊液,许多世纪前哲学家盖伦(见第一章)认为那是“心灵之气”和灵魂的栖居地,而现在则在常规的腰椎穿刺诊断过程时从中采样。

19世纪时,一个流行的观点是,人脑的发育反映了生物进化的发育。根据这种观点,子宫中的人脑最先类似于爬行动物的脑,接着是鱼脑,然后是鸟脑,最后是低等哺乳动物的脑,如鼠脑,再通过猫和相近的动物,一直到高等哺乳动物的脑。到妊娠结束时,人脑将类似于最重要的动物即灵长类的脑,此后逐渐走向人类的脑。甚至进入了20世纪的前半叶,这种观点仍延续着:奥尔德斯·赫胥黎(Aldous Huxley)在其一部小说中,就提到了在主教长袍与指环上的“前鱼”(ex-fish)图案。

不管它可能是多么有趣和吸引人,作为一个普遍概括,个体发育反映种系发育的观点实际上并不正确。进化上“高等”种属的脑并不是简单地比低等种属的更发达。进化更像是丛生灌木而非阶梯,物种根据特殊生活方式的要求和需要沿不同路线发育。人类胚胎脑没有任何时候会类似于蛇脑,如蛇脑中与嗅觉相关的区域(嗅球)就发育得特别好。更准确地说,每个脑都是根据特定物种的个体生活方式进化的。人的小脑在发育中也没有任何时候占过全部脑实质的一半或90%,而小公鸡和某种鱼的脑则分别是这两种情况。在不同的物种之间,小脑变异最少,然而,恰恰是发育成小脑的脑实质比例如此之高,偏离了脑的变异与特定物种相适合的基本图式。人们推测,小公鸡和鱼在生活中需要产生与输入感觉精巧协调的运动,而且这种需要对它们生活方式的支配程度远甚于人类。但一个大得不成比例的小脑并非所有物种脑发育的必经之路。

从另一角度来看,发育中人脑的一个引人注目的特征是,不同阶段的未成熟皮层确实与其他物种的皮层很相象。例如,鼠、兔和豚鼠的皮层纹理平整,而猫的皮层则有一些脑回。进化到灵长类的脑时,脑回显著增加,而成熟的人脑皮层的表面就像核桃。十分有趣的是,这些脑回只是出现在妊娠7个月左右,人脑发育相对较晚的时候。皮层折叠的优点是,能在有限空间中容纳更多的表面区。可以想象把碎纸放入字纸篓的情况:纸折叠得越多,字纸篓所能容纳的纸就越多。

在这种情况下,有皱折的皮层的发育似乎提供了个体发育反映种系发育的实例。但也许皮层功能直接与脑的总体复杂性相关,而与生活方式上种属特异性并不相干。假如皮层对于认知过程是最重要的区域(如在第一章中所设想的),那么,显然一个物种的皮层越多,就能够在最大程度上灵活适应其特定的环境。

另一方面,海豚的皮层上有比人类更多的脑回,但据估计,其智力只及狗的水平。看来,皮层的大小和与此相关的脑回数目并不是唯一的决定性特征。海豚有很大的脑,这只是因为其脑的大小并不像人类那样受到母亲骨盆的限制。虽然海豚有较大表面积的皮层,但比人的皮层更薄,其中的神经元以不那么复杂的模式组织在一起。因此,尽管皮层胞回显然是决定脑最终能力的一个因素,并随人类在子宫中的生长和进化过程不断增加,但其他的因素也很重要。

对于所有的物种而言,在基本构造单元,即神经元的水平上,脑生长中发生事件的顺序是一样的。如果脑要生长,而脑又是由神经元组成的,那么神经元在数量上必须持续增加。日后将成为神经元的那些细胞通过分裂的方式来满足发育中脑的要求。为了分裂,一个神经元的前体将作可循环数次的短程旅行。通过伸出其触须样的延伸部分,神经元的中间部分从神经管的外区滑向中心。一旦到达中心,核就分裂,两个新生细胞接着退回到神经管外缘,开始下轮循环。

重要的是记住,脑并不是一个均质团,而是如我们在第一、二章中所见的,由高度特化的区域组成。这些区域可以按其形状和各自在脑的总体功能中所执行的运作来加以区分。对于生长中的脑,至关重要的不仅是更多的细胞,而是它们必须出现在正确位置。一旦一个神经元已经历了几次分裂循环,就必须迁移到新脑中的正确位置上去。

起初,神经元会简单地从神经管外区移向内区,但当这一区域随着细胞增加而变厚,且构筑完善后,细胞会按其不同的命运向不同的方向移动。例如,有一些细胞恰在此中间区下移动,它们将成为一种特殊类型的神经元——中间神经元,在较小的局部回路中把神经元联结起来,而移到该区细胞的一部分将成为胶质细胞。

神经胶质细胞并不是神经元,但在脑中含量丰富,实际上其数量超出神经元10倍。神经胶质细胞(glia)这一术语源自希腊语,意为“胶水”。第一次观察到这些细胞时,它们似乎粘附于神经元上。有许多具不同功能的各类胶质细胞。一类胶质细胞(巨噬细胞)起的作用是清除损伤后脑内死亡细胞的碎片;另一类胶质细胞产生脂肪性鞘,绕在许多神经元周围,起着电绝缘的作用。

星形细胞是以某星形外表而得名的一类胶质细胞,它无处不在,似乎并无单一功能。原先人们认为星形细胞有一种相当被动的功能,即只是通过提供一种生物网架(更正式的名称为胞外基质)来防止神经元滑动。但现在已清楚,星形细胞起的作用范围广泛,且更为动态。在健康成年人,这些非神经元细胞,通过确保神经元周围化学组成上的良好微环境来保护神经元。它们起海绵或缓冲器的作用,清除潜在的过量或致毒含量的化学物。在神经元损伤发生时,星形细胞将会加倍工作,大小和数量均增加,从而能释放大剂量的物质,使随后的神经元生长及损伤后的修复成为可能。

在神经元迁移至发育中大脑的远端的过程中,胶质细胞有多重要呢?尽管对神经元迁移远未有清楚的了解,但我们已经知道,在脑发育中胶质细胞的一个特别重要的工作是作为一种临时的脚手架。胶质细胞先于神经元从原点出发,好像为其铺设了一条轨道。在它们的召唤下,神经元就沿着胶质细胞滑行,犹如在一道单轨上滑行。若缺少胶质细胞,那么某些神经元将无法迁移,引起可怕的后果。

下面就是脑内神经元不能沿胶质细胞单轨迁移时产生问题的一个著名例子,它发生在某种突变小鼠(即所谓“织工鼠”)身上,这种小鼠因显示出运动严重紊乱而得名。这些小鼠会突然转向任意的方向而不走直线,它们通常很虚弱,不停地颤抖。这些“织工鼠”的问题出在其头背部的小脑上。由于基因突变,这个区域的胶质细胞没有得到应有的发育,导致一群小脑神经元末迁移到它们正确的位置。转而,神经元又错位排列,整个小脑异常地小。如我们在第二章所见,由于小脑在协调运动和感觉方面很重要,这种小脑受损的动物所表现的运动紊乱是不足为奇的。每个神经元是如何知道何时离开单轨落到未来脑的特定位置上的,目前仍是一个谜。
决策中的五大心理陷阱
22条方法优化大脑
人类要对人体本身进行深入研究
美科学家发现人类93%行为可以预测
美国式精神疾病开始全球化
从骗子的思路看人生
我们如何做决定
中国科学家对“恐惧记忆形成机制”有新发现
快乐时光终觉短 “觉时间短必快乐”依然成立
心理学家研究发现6小时痛苦记忆消除法
研究证实大脑可对别人的疼痛产生生理反应
津巴多的权力服从实验(米尔格拉姆实验)
人性的经典总结
聪明与否并不取决于脑容量大小
脑中的营销战--神经营销
人造神经
科学家发现新生脑细胞能清除旧记忆
五个有趣的心理规律
美智囊团发布报告称家庭和孩子阻碍女科学家前行
童年时期的动物
女性比男性更会“观色”重要因素:先天差异
人类理性对秩序的探究
科学家找到大脑智力中心
人类进化,人类起源,人类基因研究,人的研究报告 人的研究报告1 人的研究报告2

本栏目主要介绍人类的故事,包括人类的进化、人类的起源、人类学、人类研究、人类基因发现、人脑的发育等。特别关注有关人与文化方面的研究。

『科学频道首页』 『本栏页首』 『关闭窗口』